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ABSTRACT 

We present a rapid (1 day), modular, high-yield 
(~90%) fabrication process for Parylene C bellows and 
their mechanical characterization.  Load-deflection 
testing was performed on bellows of varying convolution 
numbers (1.0, 2.0, and 3.0) and compared to both finite 
element modeling (FEM) simulations and an analytical 
model based on membrane deflection theory.  Bellows 
produced a consistent load response.  Actuators 
(consisting of electrodes, electrolyte, and bellows) were 
assembled and then integrated into a 
polydimethylsiloxane (PDMS, or silicone rubber) drug 
reservoir.  Preliminary results indicate accurate (< 5% 
error) drug delivery during repeated dosing at constant 
flow rate (3.75 μL/min, 2.0 convolution bellows, 1 mA 
constant current). 

 
KEYWORDS 

Parylene C, bellows, electrochemical, actuator 
 
INTRODUCTION 

A bellows is a thin-walled corrugated tube [1] that is 
typically found in flexible coupling elements, in pressure 
switches or gauges, or as a hermetic housing [2].  In 
MEMS, bellows have been used in fuel cells [3], 
endoscopic pressure sensors [4], and microfluidic channel 
connectors [5]. 

Bellows can achieve higher deflection with less 
applied pressure than corrugated or flat diaphragms, as 
discussed in [6].  Furthermore, additional convolutions 
can increase the achievable deflection without 
significantly increasing device size. 

However, despite these advantages, bellows are 
difficult to fabricate using traditional layer-by-layer 
photolithography-based fabrication processes.  Multiple 
lithography, deposition, and patterning steps are required 
to lay down the sacrificial and structural materials 
required to form the bellows structure; multiple 
photomasks are also required to define the inner and outer 
diameters of the rings forming the bellows wall [7].  A 
standard profile of a bellows is shown in Figure 1, where 
L is the length of one convolution, t the wall thickness, ID 
the inner diameter of the bellows, OD the outer diameter 
of the bellows, and H the height of one layer, or half the 
convolution length. 

 
Figure 1: Standard profile of a bellows. 

A sacrificial wax molding technique for Parylene 
bellows was described but required acid or solvent and 
elevated temperatures, which induced residual stress in 
the Parylene [5].  Focused-ion-beam chemical vapor 
deposition was utilized to fabricate bellows, but was only 
achieved in carbon film nanostructures and required 
expensive equipment [8].  

Previously, we reported MEMS electrochemically- 
driven bellows actuators for drug delivery.  The actuator 
consisted of a Parylene bellows (1.5 convolution only) 
filled with electrolyte (water) and attached to a platinum 
interdigitated electrode [6,9].  When activated, the 
actuator pumped drug out of an adjacent reservoir.  Here, 
we report a new high-yield fabrication process, 
characterization of bellows having different numbers of 
convolutions, and preliminary demonstration of accurate 
dosing using assembled bellows actuators intended for 
drug delivery applications.  Our new non-lithography 
based process reduces fabrication time (1 week down to 1 
day), features reusable molds, and achieved higher yields 
(~90%) in contrast to our previous work [6]. 

 
DESIGN AND FABRICATION 

The inner and outer bellows diameters were chosen to 
correspond with the active area of the electrode.  The 
number of convolutions was varied to determine the 
potential benefit of additional convolutions to the 
maximum displacement volume, but was kept low to 
minimize the overall bellows height in consideration of 
minimizing dimensions of the drug delivery device. The 
fabrication process is briefly summarized. 
 
Bellows 

Perforated polydimethylsiloxane (Sylgard 184; Dow 
Corning Corp., Midland, MI) sheets formed reusable 
molds and were filled with molten (50 °C) low molecular 
weight (Mn 1000) polyethylene glycol (PEG; Alfa Aesar, 
Ward Hill, MA).  Each PDMS sheet measured 0.40 ± 0.02 
mm in thickness.  Smoother and less brittle replicas were 
obtained upon cooling and neither vacuuming nor mold 
reinforcement was necessary as in [6].  Solidified PEG 
modules, consisting of one or two layers each as shown in 
Figure 2, were stacked and fused by moistening the 
opposing faces of the modules to create bellows molds in 
increments of 1.0 convolution.  Bellows molds (1.0, 2.0, 
3.0 convolutions) were coated with Parylene C (9.5 or 
13.5 μm; Specialty Coating Systems, Indianapolis, IN), 
after which the sacrificial PEG was removed by soaking 
in room temperature deionized water.  This new improved 
bellows fabrication process takes only 1 day. 
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Figure 2: Bellows fabrication process. Three modules of 
PEG-filled, 0.4 mm thick PDMS molding sheets with punched 6 
(bellows inner diameter) and 9 (bellows outer diameter) mm 
holes were used in various combinations to rapidly form any 
desired number of convolutions, and then acted as a sacrificial 
mold for Parylene C coating. 

Electrochemical Actuators 
Electrochemical actuators were assembled (platinum 

electrodes, electrolyte, bellows) using double-sided 
pressure sensitive adhesive film (3M™ Double Coated 
Tape 415, 3M, St. Paul, MN) and reinforced with epoxy 
(Devcon 5 Minute Epoxy, Danvers, MA). Wires were 
attached to the electrodes with silver epoxy (EPO-TEK® 
H20E, Epoxy Technology, Inc., Billerica, MA). 
 
Drug Pump 

Acrylic molds were machined with a CNC mill and 
used for casting biocompatible polydimethylsiloxane 
(MDX-4-4210, Factor II, Inc., Lakeside, AZ) reservoirs. 
Molds were cured at 80 °C for one hour. An actuator was 
then integrated into the reservoir and the integrated device 
was cured at 80 °C for 30 minutes. 
 
THEORETICAL MODELS 
Analytical 

In the linear bellows approximation [2], bellows were 
treated as a series of rigidly connected diaphragms having 
small displacement (defined as deflections < 30% of plate 
thickness).  The total bellows deflection is the sum of the 
individual diaphragm deflections.  However, thin 
diaphragms can yield displacement greater than 5 times 
the thickness and have a cubic characteristic equation in 
relation to the applied pressure [2]: 
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In the case of a Parylene C bellows, δ is the bellows 
deflection, μ is the Poisson’s ratio of Parylene C (0.4 
[10]), a is the diaphragm radius, P is the uniform applied 
pressure, E is the Young’s modulus of Parylene C (4.75 
GPa [11]), and h is the thickness of the Parylene bellows 
wall.  The thin diaphragm characteristic equation was the 
basis for our nonlinear analytical model and approximates 
the bellows as a series of rigidly connected, thin 
diaphragms.  Each bellows layer, as defined in Figure 1, 
was treated as a diaphragm and the thin diaphragm 
equation was applied to each layer in the convolution 
design to determine the approximate total deflection (for 
example, 5 diaphragms for a 2.0 convolution bellows). 
 

Finite Element Model Simulations 
A three-dimensional finite element model of a bellows 

with alternating diameters of 9 and 6 mm and a 
convolution length of 0.8 mm (layer height of 0.4 mm) 
was developed for linear and nonlinear static simulations 
(Solidworks Simulation 2010, Dassault Systèmes 
SolidWorks Corp., Concord, MA).  0 to 0.5 psi (0 to 3.45 
kPa) loads were applied and the resulting deflection and 
von Mises stress values were recorded for bellows having 
1, 2, and 3 convolutions.  Quarter models were used due 
to geometric symmetry.  
 
EXPERIMENTAL METHODS 
Mechanical Characterization 

Load deflection testing was performed. A pressurized 
nitrogen gas cylinder was connected to an electronic 
pressure regulator controlled using a LabView (National 
Instruments, Austin, TX) interface.  Loads from 0 to 0.5 
psi (0 to 3.45 kPa) were applied in discrete steps of 0.05 
psi to a bellows mounted in a custom acrylic fixture and 
deflection of the bellows was recorded using a compound 
microscope with a 100x objective lens (1 μm resolution). 
 
Maximum Displacement Volume 

A constant current of 5 mA was applied to 
electrochemical actuators and maintained until bellows 
failure, which was defined as popping of the bellows. 
 
RESULTS/DISCUSSION 

Load-deflection test results were compared to the 
analytical model and FEM simulations.  The analytical 
model underestimated whereas FEM simulations 
overestimated deflections achieved experimentally, but 
both provided more relevant approximations than the 
linear bellows approximation. 
 
Analytical Model 

The underestimation by the analytical model is 
attributed to the rigidity and clamped edge assumptions, 
which needs to be revised for these polymer bellows 
(Fig. 3). 

 
Figure 3: Calculated bellows deflection from the analytical 
model of the bellows (13.5 μm thick wall) as a series of 
stacked diaphragms according to the characteristic thin 
diaphragm equation (shown at the top) for large deflections. 
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Finite Element Model Simulations 
The resulting curves for linear (results not 

shown) and nonlinear static FEM deflection 
simulations exhibited a cubic shape similar to that 
of the analytical model (Fig. 4), although the 
maximum deflection was higher overall.  The yield 
stress of Parylene (55.2 MPa according to 
manufacturer and 59 MPa according to [11]) was 
not exceeded at 0.5 psi and the highest stresses 
occurred at the convolution edges.  The accuracy of 
the nonlinear FEM is limited by the availability of 
viscoelastic material parameters of Parylene C and is a 
likely explanation of the overestimation of the 
deflection. 

 
b

Max 37 39 43
Min 1.7 1.8 1.6

von Mises Stress (MPa)

 
Figure 4: FEM quarter model simulation results of a) 
deflection and b) von Mises stress (at 0.5 psi) for 1.0, 2.0, and 
3.0 convolutions bellows showed that the yield strength (55.2 
MPa) of Parylene C was not exceeded and that the bellows 
were operating within the elastic region. Highest stresses were 
concentrated at convolution edges. 
 
Load-Deflection Testing 

Load deflection results are displayed in Figure 5.  No 
plastic deformation was observed in visual inspection 
before and after testing for all bellows designs and 
responses were consistent across multiple load cycles.  As 
expected, bellows wall thickness followed a nonlinear 
inverse relationship with deflection (Fig. 5b).  Minor 
hysteresis (~30-50 μm) was observed, but was largely due 
to high flow resistance in the testing setup (data not 
shown).  Remaining hysteresis is attributed to the 
viscoelasticity of Parylene [12]. 

 
Figure 5: a) Load-deflection results for 1.0, 2.0, and 3.0 
convolutions bellows, b) effect of wall thickness on deflection 
of a 2.0 convolution bellows, c) consistent load response 
during repeated testing of a 2.0 convolutions bellows when 
pressure was cycled to 0.5 psi, and d) a 2.0 convolutions, 13.5 
μm thick bellows before and after deflection testing showed no 
signs of plastic deformation. 
 
Maximum Deliverable Volume 

Table 1 shows preliminary results for maximum 
deliverable volume, which, as expected, increases with 
the number of convolutions. A leak in the 3.0 convolution 
bellows may have contributed to a smaller increase going 
from two to three convolutions and further testing is 
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underway to improve the reliability of the bellows.  
 

Table 1: Maximum Deliverable Volume of Various Convolution 
Designs 

 
 
Flow Testing of Drug Pump 

Electrochemical actuators were integrated into a 
PDMS drug reservoir to form a drug pump and operated 
at constant current.  Preliminary results indicate accurate 
drug delivery during repeated dosing (n = 4) at constant 
flow rate (3.75 μL/min, 2.0 convolution bellows, 1 mA, 
Fig. 6).  Slight variation in the fluid delivered between 
runs is largely due to the electrolysis phenomena 
occurring at the electrodes and not the bellows; it is 
expected that improved repeatability will be obtained 
with Nafion®-coated electrodes [13]. 

 
Figure 6: Preliminary results on accurate dosing achieved with 
bellows integrated into an electrochemical actuator and drug 
reservoir. a) illustration and photo of actuator structure and b) 
photo of top view of drug pump and flow testing results. 
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