HIGH ASPECT RATIO PARYLENE Etching FOR MICROFLUIDICS AND BIOMEMS
Ellis Meng1, Seiji Aoyagi2, and Yu-Chong Tai3
1Department of Mechanical and Aeronautical Engineering, University of California, Davis, CA 95616-5294 USA
2Department of Systems Management Engineering, Kansai University, Japan
3Department of Electrical Engineering, Caltech Micromachining Laboratory, California Institute of Technology, Pasadena, CA 91125 USA

Abstract
A novel technique for producing high aspect ratio parylene structures via switching chemistry plasma etching is presented. Parylene C, or poly(monochloro-p-xylylene), has become an increasingly popular MEMS material for its excellent properties and biocompatibility. However, the inability to fabricate closely-spaced high aspect ratio (HAR) structures severely limits the use of parylene, particularly in microfluidic and bioMEMS applications. A novel method was developed to etch thin film parylene deposited on silicon substrates. Several masking materials were investigated to optimize this process. This low-temperature (<120 °C) technique is compatible with standard MEMS processes and can accommodate post-CMOS processing. Etching recipes have already been applied to bioMEMS devices and can greatly extend the range of possible structures for bioMEMS and microfluidics applications.

Keywords: parylene, DRIE, high aspect ratio, bioMEMS, microfluidics

1. Introduction
Robust polymer structures are frequently required in microfluidics and bioMEMS applications. These can be produced with polymer micromachining techniques such as embossing, soft lithography, and laser micromachining. However, to achieve compatibility with standard surface and bulk micromachining techniques and take advantage of batch fabrication, dry etching techniques must be used. Previously, plasma [1, 2] and reactive ion [3] etching of parylene in oxygen environments has been reported. These studies presented results on the etching of thin parylene films (only a few microns thick) without any attempt to develop processes to achieve HAR structures. To further complicate matters, Yeh [3] also observed that etch selectivity between parylene and standard photoresist masking materials is near unity due to their organic nature. New developments in HAR etching of silicon has inspired similar efforts in producing HAR polymer structures. Zahn [4] has reported achievable aspect ratios of 20:1 by employing Bosch-like switching chemistries in the etching of polymethylmethacrylate (PMMA). Based on these promising results, a similar technique has been created to etch parylene and photoresist.

2. Experimental
Two types of patterned test coupons were fabricated on silicon wafers and diced before etching: (1) 12µm AZ4620 photoresist masked by 0.5µm of Al and (2) 10µm of parylene masked by 14µm of AZ4620 photoresist. Sputtered amorphous silicon (0.5µm) and oxide (0.3µm) were also examined as possible masking materials. Etching was performed in a PlasmaTherm SLR-770B DRIE system using programmable switching chemistry etches. Etches are composed of repeated etching cycles, or loops. Each loop consists of three steps: (1) deposition of Teflon-like material from C4F8 plasma, (2) etch “A”, and (3) etch “B.” As in the Bosch process, the deposited fluoropolymer layer protects feature sidewalls from lateral etching. Etch “A” preferentially removes the fluoropolymer layer, exposing the parylene to the etching plasma. This step includes...
SF₆, which was found to aid in the removal of the deposited fluoropolymer layer. Etch “B” uses both oxygen and argon and serves to remove any remaining fluoropolymer and etch parylene.

3. Results and Discussion

To provide a starting point from which to evaluate switching chemistry etches, photoresist samples were etched using just oxygen plasma in a Technics PEIIA plasma etcher. Samples exhibited significant lateral etching and severely tapered profiles (Figs. 1-2). Thus, in order to achieve desired geometries, precious device real estate and aspect ratio sacrifices are necessary. In contrast, results were vastly improved by using switching chemistries (Fig. 3). Undercutting is minimal and the sidewalls are nearly vertical. Recipes and results for the etched parylene samples are summarized in Table 1 and Figure 5. Figure 4 shows the etch depth versus time for both materials. The trends are linear and the materials have similar etching rates as expected. The etching at sharp corners and other masking materials (α-Si and sputtered oxide) were also examined (Figs. 6-7). Preliminary results indicate that an aspect ratio of at least 2:1 can be achieved for etching parylene. In addition, nearly vertical sidewall profiles are maintained. Traditional oxygen plasma etching techniques of parylene yield at best a ratio of 1:1 (Fig. 8). It has been determined that the removal rate of the fluoropolymer layer can contribute significantly to the total etching process time. Further investigation will target increasing the aspect ratio and reducing etching time by optimizing gas ratios, process pressures, cycle times, and plasma biasing schemes.

Developed etching recipes have already been used to produce working devices. 4 µm thick parylene neuro-cages for the study of live neural networks have been successfully demonstrated (Figs. 9-10) [5, 6]. Previously, neuro-wells were fabricated using complicated bulk micromachining techniques [7, 8]. The development of this etching technique along with other parylene processing tools has made it possible to realize a biocompatible polymer neuro-cage device. Neuro-cage structures require mechanical robustness for the support of neuron cultures and also demonstrate the possibility of machining thick-walled parylene channels for microfluidic applications.

Acknowledgements

This work was funded in part by the Engineering Research Centers Program of the NSF under Award Number EEC-9402726. We would like to thank Mr. Trevor Roper for assistance in fabrication and Mr. Tuan Hoang for help with proofreading.

References

Figure 1. Isotropic AZ4620 etch results
Figure 2. Anisotropic AZ4620 etch results
Figure 3. Etch time dependence of switched chemistry etching of AZ4620
Figure 4. Etch trends for parylene and AZ4620
Figure 5. Typical parylene etching results
Figure 6. AZ4620 etching at sharp corners
Figure 7. Parylene etched through α-Si mask
Figure 8. Isotropic etching results for parylene
Figure 9. Single parylene neuro-cage structure
Figure 10. A 15 μm opening in neuro-cage for loading neurons

Table 1. Summary of etching results