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ABSTRACT 

 
        Here we present a surface-micromachined Parylene 
neuro-cage array for the in vitro study of live neural 
networks. Various types of neuro-cages have been 
fabricated and several adhesion promotion techniques 
have been explored. The biocompatibility and mechanical 
robustness of Parylene neuro-cages have been 
demonstrated through cell culture experiments. 
Dissociated neuronal cell bodies have been inserted one to 
a cage and cultured, allowing neurites to grow out through 
Parylene channels and form live neural networks. In 
addition, there is no observable difference between neural 
growth on Parylene and on oxide surfaces. It is possible to 
use the same or slightly modified cage structures to 
accommodate different cells, leading to possible 
applications of this technology in cell study and drug 
discovery. 
 

INTRODUCTION 
 
       Studying how neural networks, formed by individual 
neurons, perform in detail is the central task of 
neuroscience. Live neural networks have been extensively 
researched. The conventional technique is to use planar 
arrays of extracellular metal electrodes on which neural 
cultures are grown [1-2]. However, this approach can only 
arbitrarily select and access a small proportion of neurons 
in the entire network. Furthermore, since neurons are 
mobile, repeated measurements of a specific neuron are 
difficult to obtain, especially for long-term experiments.  
 
      In order to study each neuron in the neural network, 
one-to-one correspondence between the neurons and 
electrodes has to be established and maintained. This can 
be achieved by physically confining individual neurons 
over corresponding electrodes without affecting neurite 
growth and neural network formation. To accomplish 
these goals, our approach is to use micro-cage, like a 
micro Skinner Box, trapping each neuron into one cage 
while still allowing neurites to grow out through long thin 
channels connected to the cages. The neuro-cages are 
constructed in arrays to allow neurites from different 
neurons to form neural networks. Thus the cultured 
neurons in a network can be reliably stimulated and 
monitored individually and continuously over long 
periods of time.  
 

DESIGN 
 
       Previous work from this lab developed open-faced 
neuro-wells for cell containment and measurement 

(Figure 1), which has successful achieved the stated goals 
[3-4]. However, several drawbacks were identified. First, 
the process of making bulk micromachined “well” with 
nitride canopy and channels is very complicated and had 
low yield. In addition, neurites growing out through 
channels on top of the well tended to pull neuron away 
from well-bottom electrodes. To address these issues, a 
more suitable technology using Parylene and thick 
photoresist was developed incorporating a new structural 
design consisting long thin channels radiating from the 
base of the cage. 
 
 

 

 
Figure 1. Neuro-well previously developed in our group.  
 
       The structure of the new surface-micromachined 
neuro-cages is illustrated in Figure 2. Parylene is chosen 
as the structural material in this application for its unique 
properties. It is non-toxic, extremely inert, resistant to 
moisture and most chemicals, and biocompatible.  These 
properties make Parylene well suited for long-term cell 
culture experiments. Its conformal deposition makes it 
easy to fabricate 3D structures like the neuro-cage, thus 
simplifying the fabrication process as compared to the 
bulk micromachined neuro-well.  Also, yield is no longer 
a problem. Low-temperature deposition makes CMOS 
integration possible. Most importantly, Parylene is 
transparent. Thus neurons can be seen under microscope 
through the Parylene cages and neurites are easily 
observed as they grow through the channels. Because 
neurons can grow on oxide surfaces, the Parylene cages 
are attached to an oxidized silicon substrate. 
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Figure 2. 3D illustration of the neuro-cage side and 
bottom view. 
        
       The neuro-cages are arranged in a 4 by 4 array for 
studying a small 16-neuron neural network. The 
microcages, spaced 100µm apart, are designed to hold a 
single neuron in each cage. The cage consists of a top 
loading access hole, the cage body, and 6 thin channels 
that protrude from the bottom of the cage. Rat embryonic 
hippocampal neurons are used in our study. These 
neurons are 12 to 15µm in diameter when freshly 
dissociated, and when matured, are about 20µm in 
diameter and 10µm in thickness. Given these dimensions, 
the neuro-cages are designed to have a diameter of 30µm, 
height of 15µm, and access hole diameter of 15µm 
(Figure 4). Currently, the Parylene neuro-cages are used 
in culture viability experiments and no electrodes are 
incorporated.  
 
       To guarantee that a specific neuron can be repeatedly 
measured and stimulated, the neuron has to be kept in 
close proximity to an electrode. However, it is well 
known that neurons tend to move.  In our previous 
research, it was observed that neurons could manage to 
escape from even 1µm by 3µm holes at the cost of cell 
damage or death. Therefore, long thin channels are 
designed as neurite outgrowth path to prevent neurons 
from escaping. This design has been shown to work well 
in cell culture experiments. 
 

FABRICATION 
 
      Various neuro-cages with different dimensions are 
fabricated using similar processes. The generalized 
fabrication flow is shown in Figure 3. First an oxide layer 
is grown on silicon wafer. A channel height controlling 
sacrificial layer is then patterned. Two Parylene layers 
and one photoresist layer are used to form the cage. 
AZ9260 photoresist is used to make the 15µm-thick cage 
body and nearly vertical sidewalls are achieved (Figure 
4). The sacrificial materials are finally removed to release 
the microcage. 
 
      Experimentally, it has been shown that channel height 
is critical in achieving both neurite growth and neuron 
trapping. Therefore this process is designed to make the 
channel height adjustable over a wide range, by using 
different sacrificial materials. For thin channels 
approximately 0.5µm thick (Figure 5(a)), sputtered silicon 

was used as the sacrificial material and later removed by 
BrF3 or XeF2 gas etching.  Gas phase etching is 
advantageous in avoiding stiction which is normally 
experienced when releasing thin channels using wet 
etchant. 
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Figure 3. Generalized fabrication flow of the neuro-cages. 
 

 
Figure 4. SEM picture of a fabricated neuro-cage.  
  
       For even thicker channels (~ 2µm) (Figure 5(b)), 
hardbaked photoresist is used as the sacrificial material. 
The photoresist AZ1518 was hardbaked at 140°C for 
30min and later removed in ST-22 photoresist stripper. 
The hardbake serves two purposes. One is to allow the 
channel photoresist survive patterning of the sacrificial 
photoresist used to form neuro-cage body. The other is to 
withstand the isopropyl alcohol used in A-174 (gamma-
Methacryloxypropyltrimethoxy Silane) Parylene adhesion 
promotion solution (A-174: DI Water: IPA= 1:100:100).    
 

 

 
Figure 5. Neuro-cage channels with different channel 
heights. (a) 0.5µm-high channel with 3µm Parylene; (b) 
2µm-high channel with 2µm Parylene.  
 
       Efforts have also been made to improve the adhesion 
of the neuro-cages to the substrate. While Parylene-to- 
oxide adhesion is usually improved by applying A-174 to 
the substrate before Parylene deposition, this is 
insufficient for withstanding immersion in aggressive 
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chemicals used in sterilization and cell culture solutions 
for long periods of time.  This is partly due to the small 
Parylene-to-oxide contact area. The chemical adhesion 
layer in this region is easily compromised. Therefore, two 
alternative robust adhesion promotion techniques are 
investigated. The first method relies on mechanically 
anchoring Parylene to a silicon substrate [5]. DRIE is 
used to etch a trench with a mushroom-like cross section.   
The bottom of the trench is wider and serves to anchor 
deposited Parylene layers. The other technique is to 
roughen the anchoring area with short time etching in 
BrF3 or XeF2.   Both methods dramatically increase the 
contact area for adhesion. 
 
       The filled-trench process (Figure 6) starts with 
patterning oxide layer on silicon wafer to expose silicon 
in the trench/anchor areas. Then 0.3µm silicon and 0.2µm 
Al are sputtered. First, Al is patterned and chemically 
etched. Then sputtered silicon is patterned and etched in 
DRIE using photoresist and Al as mask. 15µm-thick 
photoresist AZ9260 is defined to form the cage body. 
Nearly vertical sidewalls are achieved (Figure 7(b)). 
DRIE is then used to make the anchoring structures using 
a modified Bosch process. The standard procedure is used 
to etch a 10µm deep trench. Then an isotropic etch in SF6 
plasma is performed to create a widened portion at the 
bottom of the trench. Parylene is deposited and patterned, 
followed by sacrificial materials removal. Figure 7 shows 
the fabricated neuro-cages and anchor cross sections. 
 

 
Figure 6. Process flow of neuro-cages with Parylene-filled 
anchors. The figure shows cross section of cage channels. 
 
       The roughening processing also starts with patterning 
oxide to expose silicon in the anchor areas.  A brief etch 
in XeF2 gas is then used to roughen the silicon surface. 
The following process is the same as the process in Figure 
3. The illustration and fabricated cage is shown in Figure 
8. 
 

 

 

 
Figure 7. Fabricated neuro-cages with DRIE-made 
Parylene-filled anchors. (c) is the cross section of anchors. 
     

 

 
Figure 8. Illustration and fabricated neuro-cages using 
XeF2 roughened anchors.  
 

CELL CULTURE EXPERIMENTS  
 

       The fabricated chips are first sterilized to prevent 
bacteria from infecting neural cultures.  Rat hippocampal 
neurons are loaded into the cages through the loading hole 
by manually sucking neurons up in a glass pipette and 
injecting them into neuro-cages one-by-one. Since 
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Parylene is transparent, the neurons can be seen under 
microscope when they are placed into the neuro-cages. 
Neurons are then cultured and observed for developments. 
Usually neurons grow neurites that spread out to form 
neural networks after several days in culture.  
 
        First, Parylene has been shown to be compatible with 
neurons and glial cells. Figure 9 shows the growth of 
neurons and glial cells on a Parylene surface. There is no 
observable difference between neural and glial growth on 
Parylene and oxide surfaces. Neurons are observed to 
grow multiple processes that are long and branching, 
which is an indication of healthy cells. Also, neural 
networks were formed.  
 
        Secondly, the Parylene neuro-cages are shown to be 
functional as designed. As shown in Figure 10, freshly 
dissociated neuron can be loaded into neuro-cage. 
Neurites have successfully grown out from cage channels, 
while the neuron cell body is still trapped inside the cage. 
 

 
Figure 9. Neural and glial growth on Parylene surface.  

 
CONCLUSION 

 
        Various types of surface-micromachined Parylene 
neuro-cages have been fabricated to study live neural 
networks. Through cell culture experiments using 
dissociated rat hippocampal neurons, the Parylene neuro-
cages have been verified to be both biologically 
compatible and mechanically functional. 
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Figure 10. (a) Optical picture of neuro-cages ready to be 
loaded; (b) A neuron just loaded into a neuro-cage; (c) 
Nomarski picture of neurites outgrowth through cage 
channels while neuron cell body is trapped inside the 
cage; (d) Mosaic Nomarski picture of neural and glial 
growth in a 4 by 4 neuro-cage array after seven days in 
culture. Note not all cages were loaded with neuron.  
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